Internalization and processing of basic fibroblast growth factor by neurons and astrocytes.
نویسندگان
چکیده
The fate of iodinated basic fibroblast growth factor (FGF) after its binding to cultured astrocytes and hippocampal neurons was studied. Autoradiography after light and electron microscopy establishes that, if cells are returned to 37 degrees C, the 125I-basic FGF bound internalizes into vesicles in the cytoplasm, localizes to the perinuclear cytoplasm, and is translocated to chromatin structures of the nucleus. The radiolabeled protein is long-lived, a finding confirmed by biochemical analyses. Polyacrylamide gel electrophoresis and autoradiography of both hippocampal neurons and astrocyte extracts reveal that these cells internalize 125I-basic FGF and then metabolize it to three major heparin-binding peptides with molecular weights of 15.5, 9, and 4 kDa. These peptides are initially detected 16 hr after binding to neurons and 4 hr after binding to astrocytes but are still detectable 48 and 16 hr, respectively, after initial binding (though present at lower levels). Immunoprecipitation with sequence-specific antisera to basic FGF reveals that the 15.5-kDa fragment is generated by cleavage at the carboxyl terminus, that the 9-kDa peptide contains the sequences between residues 30 and 87, and the 4-kDa peptide is a C-terminus fragment containing the sequence of basic FGF(106-120) but without basic FGF(139-146) immunoreactivity. The internalization of basic FGF is required for this processing; the treatment of cells with trypsin and 2 M NaCl at different times after binding can only prevent the metabolism of basic FGF if it is performed immediately after binding. Similarly, WGA, which inhibits basic FGF binding to its high-affinity receptor, prevents the metabolism of basic FGF. The possible significance of a metabolic pathway that is responsible for the processing of basic FGF after its internalization by cells in the CNS is discussed in light of its potential function as a neurotrophic factor.
منابع مشابه
Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملAnalysis of trophic responses in lesioned brain: focus on basic fibroblast growth factor mechanisms.
The actions of fibroblast growth factors (FGFs), particularly the basic form (bFGF), have been described on a large number of cells and include mitogenicity, angiogenicity and wound repair. The present review discusses the presence of the bFGF protein and messenger RNA as well as the presence of the FGF receptor messenger RNA in the rodent brain by means of semiquantitative radioactive in situ ...
متن کاملImpact of basic FGF expression in astrocytes on dopamine neuron synaptic function and development.
Behavioural sensitization to amphetamine (AMPH) requires action of the drug in the ventral midbrain where dopamine (DA) neurons are located. In vivo studies suggest that AMPH sensitization requires enhanced expression of basic fibroblast growth factor (bFGF) in the nucleus of midbrain astrocytes. One idea is that the AMPH-induced increase in bFGF expression in astrocytes leads to enhanced secre...
متن کاملA time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury.
Traumatic injury to the CNS initiates transient and unsuccessful regeneration of damaged neural pathways, accompanied by reactive gliosis, angiogenesis, and deposition of a dense fibrous glial/meningeal scar at the wound site. Basic fibroblast growth factor (basic FGF) is a CNS protein with potent effects on neurons, glia, fibroblasts, and vascular endothelial cells. Hybridization and immunocyt...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 7 شماره
صفحات -
تاریخ انتشار 1991